The singular perturbation of surface tension in Hele-Shaw flows

نویسندگان

  • H. D. Ceniceros
  • T. Y. Hou
چکیده

Morphological instabilities are common to pattern formation problems such as the non-equilibrium growth of crystals and directional solidification. Very small perturbations caused by noise originate convoluted interfacial patterns when surface tension is small. The generic mechanisms in the formation of these complex patterns are present in the simpler problem of a Hele-Shaw interface. Amid this extreme noise sensitivity, what is then the role played by small surface tension in the dynamic formation and selection of these patterns? What is the asymptotic behaviour of the interface in the limit as surface tension tends to zero? The ill-posedness of the zero-surface-tension problem and the singular nature of surface tension pose challenging difficulties in the investigation of these questions. Here, we design a novel numerical method that greatly reduces the impact of noise, and allows us to accurately capture and identify the singular contributions of extremely small surface tensions. The numerical method combines the use of a compact interface parametrization, a rescaling of the governing equations, and very high precision. Our numerical results demonstrate clearly that the zero-surface-tension limit is indeed singular. The impact of a surface-tension-induced complex singularity is revealed in detail. The singular effects of surface tension are first felt at the tip of the interface and subsequently spread around it. The numerical simulations also indicate that surface tension defines a length scale in the fingers developing in a later stage of the interface evolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

نگاشت همدیس در طرح‌های انگشتی سافمن- تیلور

 We studied the growth of viscous fingers as a Laplacian growth by conformal mapping. Viscous fingers grow due to Saffman-Taylor instability in the interface between two fluids, when a less viscous fluid pushes a more viscous fluid. As there was an interest in the rectangular Hele-Shaw cell, we solved the Laplacian equation with appropriate boundary conditions by means of conformal mapping tech...

متن کامل

Numerical study of Hele-Shaw flow with suction

We investigate numerically the effects of surface tension on the evolution of an initially circular blob of viscous fluid in a Hele-Shaw cell. The blob is surrounded by less viscous fluid and is drawn into an eccentric point sink. In the absence of surface tension, these flows are known to form cusp singularities in finite time. Our study focuses on identifying how these cusped flows are regula...

متن کامل

The effect of surface tension on the shape of fingers in a Hele Shaw cell

The experimental results of Saffman & Taylor (1958) and Pith (1980) on fingering in a Hele Shaw cell are modelled by two-dimensional potential flow with surface-tension effects included at the interface. Using free streamline techniques, the shape of the free surface is expressed rn the solution of a nonlinear integro-differential equation. The equation is solved numerically and the solutions a...

متن کامل

Two-dimensional Stokes and Hele-Shaw flows with free surfaces

We discuss the application of complex variable methods to Hele-Shaw flows and twodimensional Stokes flows, both with free boundaries. We outline the theory for the former, in the case where surface tension effects at the moving boundary are ignored. We review the application of complex variable methods to Stokes flows both with and without surface tension, and we explore the parallels between t...

متن کامل

Classical solutions for Hele-Shaw models with surface tension

It is shown that surface tension effects on the free boundary are regularizing for Hele-Shaw models. This implies, in particular, existence and uniqueness of classical solutions for a large class of initial data. As a consequence, we give a rigorous proof of the fact that homogeneous Hele-Shaw flows with positive surface tension are volume preserving and area shrinking.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000